Evaluating functional covariate‐environment interactions in the Cox regression model
نویسندگان
چکیده
منابع مشابه
Penalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملModel assisted Cox regression
Semiparametric random censorship (SRC) models (Dikta, 1998), derive their rationale from their ability to gainfully utilize parametric ideas within the random censorship environment. An extension of this approach is developed for Cox regression, producing new estimators of the regression parameter and baseline cumulative hazard function. Under correct parametric specification, the proposed esti...
متن کاملImplementation of complex interactions in a Cox regression framework
The standard Cox proportional hazards model has been extended by functionally describable interaction terms. The first of which are related to neural networks by adopting the idea of transforming sums of weighted covariables by means of a logistic function. A class of reasonable weight combinations within the logistic transformation is described. Apart from the standard covariable product inter...
متن کاملMixed discrete and continuous Cox regression model.
The Cox (1972) regression model is extended to include discrete and mixed continuous/discrete failure time data by retaining the multiplicative hazard rate form of the absolutely continuous model. Application of martingale arguments to the regression parameter estimating function show the Breslow(1974) estimator to be consistent and asymptotically Gaussian under this model. A computationally co...
متن کاملTime-dependent covariates in the Cox proportional-hazards regression model.
The Cox proportional-hazards regression model has achieved widespread use in the analysis of time-to-event data with censoring and covariates. The covariates may change their values over time. This article discusses the use of such time-dependent covariates, which offer additional opportunities but must be used with caution. The interrelationships between the outcome and variable over time can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Statistics
سال: 2019
ISSN: 0319-5724,1708-945X
DOI: 10.1002/cjs.11486